過程 |
|
指導上の留意点(○)、評価規準と評価方法(◇)
算数的活動(◎) |
|
つかむ |
[問題]
みずきさんは、おばさんからもらった長さ2.5mのリボンを、妹と分けることにしました。
みずきさんの分と妹の分の長さの比を3:2にするには、それぞれ何mずつに分けたらよいですか。 |
|
○ |
問題の意味を把握しやすくするために、実際に紙テープを用いてリボンの長さを示してイメージを持たせ、線分図をかいて考えるきっかけとする。 |
|
|
見通す |
2 |
解決の見通しをもつ。 |
|
・ |
線分図を用いて考える。 |
|
・ |
関係図を用いて、比の値を使って考える。 |
|
◎ |
線分図や関係図、比の値を使って考えさせるために、これまでのノートを振り返らせる。(ア) |
|
自力解決 |
|
○ |
1つの方法で求めたら、他の方法も考えさせる。
|
○ |
全体の割合を表せない児童には、本単元第2時の問題4の (p.63)のノートを振り返らせる。
|
◎ |
この後の学び合いの活動で友達に説明させるために、ノートに図、式、言葉などを用いて記述するようにさせる。(イ) |
○ |
妹の分のリボンの長さを求める際に
2.5−1.5=1
として、全体のリボンの長さからみずきさんの分のリボンの長さを引いて求めている児童を全体に紹介し、比を用いない求め方にも考えを広げさせる。
|
|
学び合い |
|
◎ |
自分の考えを説明する際には、ノートを示しながら説明させる。(イ) |
◎ |
自分の考えを説明させる際には、児童が発言する次のような言葉に注目し、児童の考えをつなげていく。 (イ) |
|
・まず…自分の考えを分割し、整理しようする言葉。
・でも…反例をあげ、考えを説明しようとする言葉。
・だったら…友達の考えを基にして、その先を考えて
説明しようとする言葉。
・もし…条件を変えたり、考えを整理したり、一般化
を図ったりしようとする言葉。 |
◎ |
これまでの学習を基に、言葉や図、式などを関連付けて説明させる。(イ) |
◎ |
自分のやり方と同じか違うかを意識させながら聞かせる。また、よく分からないところは、お互いに質問し合わせる。(イ) |
◎ |
説明を聞いて、自分の考えと異なる考えやよい考えがあったらノートにかかせる。(イ) |
◇ 比の考えを使って全体の割合を求め、問題を解決している。
【数学的な考え方】[ノート、行動観察] |
|
5 |
考えたことをグループの代表が発表・板書し、全体で話し合う。
|
|
≪児童が実際にノートにかいた考え≫ |
 |
「線分図を基に、立式して考えたノート例」 |
|
○ |
@は、比の1にあたるリボンの長さを求めて考えるやり方である。@もAも全体の割合が3+2(=5)で求められることに気付くようにすることが大切である。
|
◎ |
Aで使う比の値は@の線分図の全体と部分の関係にあたる点において関連付けて、どちらも全体の割合を求めていることを確認する。(イ) |
|
まとめる |
6 |
振り返り問題を解く。
(教科書p.69 A) |
7 |
本時の学習をまとめる。 |
|
・ |
「部分と部分の比が3:2のとき、全体の割合は、3+2(=5)と考えるとよい」 |
8 |
本時の学習を算数日記にまとめる。 |
≪児童が実際に書いた算数日記の例≫ |
 |
|
○ |
1つの方法で求めたら、他の方法も考えさせる。 |
|
|
○ |
比の考えを使うことで、身近な生活の中の問題が解決できたことを振り返る。
|
○ |
授業で分かったことや感想、これから気を付けたいことやさらに調べてみたいことなどを書かせるようにする。 |
|